Publications

Journal Articles

Karl, J. M., Slack, B. M.*, Wilson, A. M.*, Wilson, C. A.*, & Bertoli, M. E.* (2019). Increasing task precision demands reveals that the reach and grasp remain subject to different perception-action constraints in 12-month-old human infants. Infant Behavior and Development, 57, 101382, doi:10.1016/j.infbeh.2019.101382. (PubMed)

Karl, J. M., Wilson, A. M., Bertoli, M. E., Shubear, N. S. (2018). Touch the table before the target: Contact with an underlying surface may assist the development of precise visually controlled reach and grasp movements in human infants. Experimental Brain Research, 236(8), 2185-2207, doi:10.1007/s00221-018-5293-4. (PubMed)

Kuntz, J. R., Karl, J. M., Doan, J. B., Whishaw, I. Q. (2018). Gaze anchoring guides real but not pantomime reach-to-grasp: support for the action–perception theory. Experimental Brain Research, 236(4), 1091-1103doi: 10.1007/s00221-018-5196-4. (PubMed)

Karl, J. M., Kuntz, J. R., Lenhart, L. A., & Whishaw, I. Q. (2018). Frame-by-frame video analysis for the quantification of idiosyncratic reach-to-grasp movements in humans. Journal of Visualized Experiments, 131, e56733, doi:10.3791/56733. (PubMed)

Whishaw, I. Q., Karl, J. M., & Humphrey, N. K. (2016). Dissociation of the Reach and the Grasp in the destriate (V1) monkey Helen: a new anatomy for the dual visuomotor channel theory of reaching. Experimental Brain Research, 234(8), 2351-2362. (PubMed)

Whishaw, I. Q. & Karl, J. M. (2015). The contribution of the Reach and the Grasp to shaping brain and behaviour. Canadian Journal of Experimental Psychology, 68(4), 223-235. (PubMed)

Thomas, B. L., Karl, J. M., & Whishaw, I. Q. (2014). Independent development of the Reach and the Grasp in self-touching by human infants in the first six months. Frontiers in Developmental Psychology, 5(1526), doi: 10.3389/fpsyg.2014.01526. (PubMed)

Karl, J. M., & Whishaw, I. Q. (2014). Haptic grasping configurations in early infancy reveal different developmental profiles for visual guidance of the Reach versus the Grasp. Experimental Brain Research, 232(10), 3301-3316. (PubMed)

Hall, L. A., Karl, J. M., Thomas, B. L., & Whishaw I. Q. (2014). Reach and Grasp reconfigurations reveal that proprioception assists reaching and hapsis assists grasping in peripheral vision. Experimental Brain Research, 232(9), 2807-2819. (PubMed)

Karl, J. M., & Whishaw, I. Q. (2013). Different evolutionary origins for the Reach and the Grasp: an explanation for dual visuomotor channels in primate parietofrontal cortex. Frontiers in Neurology, 4(208), doi: 10.3389/fneur.2013.00208. (PubMed)

Karl, J. M., Schneider, L. R., & Whishaw, I.Q. (2013). Nonvisual learning of intrinsic object properties in a reaching task dissociates grasp from reach. Experimental Brain Research, 225(4), 465-77. (PubMed)

Karl, J. M., Sacrey, L. R., Doan, J. B., & Whishaw, I. Q. (2012). Oral hapsis guides accurate hand preshaping for grasping food targets in the mouth. Experimental Brain Research, 221(2), 223-240. (PubMed)

Sacrey, L. R., Karl, J. M., & Whishaw, I. Q. (2012). Development of visual and somatosensory attention of the reach-to-eat movement in human infants aged 6 to 12 months. Experimental Brain Research, 223(1), 121-36. (PubMed)

Karl, J. M., Sacrey, L. R., Doan, J. B., & Whishaw, I. Q. (2012). Hand shaping using hapsis resembles visually guided hand shaping. Experimental Brain Research, 219(1), 59-74. (PubMed)

Sacrey, L. R., Karl, J. M., & Whishaw, I. Q. (2012). Development of rotational movements, hand shaping, and accuracy in advance and withdrawal for the reach-to-eat movement in human infants aged 6 to 12 months. Infant Behavior and Development, 35(3), 543-560. (PubMed)

Karl, J. M., Alaverdashvili, M., Cross, A. R., & Whishaw, I. Q. (2010). Thinning, movement, and volume loss of residual cortical tissue occurs after stroke in the adult rat as identified by histological and magnetic resonance imaging analysis. Neuroscience, 170(1), 123-137. (PubMed)

Whishaw, I. Q., Sacrey, L. R., Travis, S. G., Gholamrezaei, G., Karl, J. M. (2010). The functional origins of speech-related hand gestures. Behavioural Brain Research, 214(2), 206-215. (PubMed)

Karl, J. M., Sacrey, L. R., McDonald, R. J., & Whishaw I. Q. (2008). Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington’s disease. Brain Research Bulletin, 77(1), 42-48. (PubMed)

Gharbawie, O. A., Karl, J. M., Whishaw, I. Q. (2007). Recovery of skilled reaching following motor cortex stroke: Do residual corticofugal fibers mediate compensatory recovery? European Journal of Neuroscience 26(11), 3309-27. (PubMed)

Book Chapters & Encyclopedia Entries

Whishaw, I. Q. & Karl, J. M. (2019). The Evolution of the Hand as a Tool in Feeding Behavior: The Multiple Motor Channel Theory of Hand Use. In V. Bels & I.Q. Whishaw (Eds.), Feeding in Vertebrates: Anatomy, Biomechanics, Evolution (pp. 159 – 186). Switzerland: Springer Nature. (Springer Nature)

Karl, J. M., Sacrey, L. A., Whishaw, I. Q. (2018). Multiple Motor Channel Theory and the Development of Skilled Hand Movements in Human Infants. In D. Corbetta & M. Santello (Eds.), Reach-to-Grasp Behavior: Brain, Behavior and Modelling across the Life Span, (pp. 42-68). Abingdon, UK: Routledge Taylor & Francis. (Taylor & Francis)

Karl, J. M. (2017). Prehension. In B. Hopkins, E. Geangu, & S. Linenauger (Eds.) The Cambridge Encyclopedia of Child Development, 2nd Edition (pp. 542 – 548). Cambridge, UK: Cambridge University Press. (Cambridge University Press)

Karl, J. M. & Culham, J. C. (2016). Beyond Roland: How does the Human Brain Produce Complex Motor Behaviours? Insights from Functional Neuroimaging. In B. Kolb & I. Q. Whishaw (Eds.) Brain & Behaviour: Revisiting the Classic Studies (pp. 253-265). London, UK: Sage. (Sage)

Karl, J. M. & Whishaw, I. Q. (2012). Rodent skilled reaching for modeling pathological conditions of the human motor system. In E. L. Lane & S. B. Dunnett (Eds.), Contemporary Animal Models of Movement Disorders: Volume I, Neuromethods, vol. 61, (pp. 87 – 107). New York, NY: Springer. (Springer)